Late Acceptance Hill Climbing Based Social Ski Driver Algorithm for Feature Selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The late acceptance Hill-Climbing heuristic

This paper introduces a new and very simple search methodology called Late Acceptance Hill-Climbing (LAHC). It is a one-point iterative search algorithm, which accepts non-improving moves when a candidate cost function is better (or equal) than it was a number of iterations before. This value appears as a single algorithmic input parameter which determines the total processing time of the searc...

متن کامل

Hill-climbing feature selection for multi-stream ASR

We performed automated feature selection for multi-stream (i.e., ensemble) automatic speech recognition, using a hillclimbing (HC) algorithm that changes one feature at a time if the change improves a performance score. For both clean and noisy data sets (using the OGI Numbers corpus), HC usually improved performance on held out data compared to the initial system it started with, even for nois...

متن کامل

Association Rule Mining Based Video Classifier with Late Acceptance Hill Climbing Approach

Video classification is an essential step towards video perceptive. In recent years, the concept of utilizing association rules for classification emerged. This approach is more efficient and accurate than traditional techniques. Associative classifier integrates two data mining tasks such as association rule discovery and classification, to build a classifier for the purpose of prediction. The...

متن کامل

Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets

Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...

متن کامل

Late Acceptance Hill Climbing for The Liner Shipping Fleet Repositioning Problem

Late Acceptance Hill Climbing (LAHC) has been shown to be an effective local search method for several types of optimization problems, such as on certain types of scheduling problems as well as the traveling salesman problem. We apply LAHC to a central problem in the liner shipping industry, the Liner Shipping Fleet Repositioning Problem (LSFRP). The LSFRP involves the movement of vessels betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2988157